var a bigint = 1r << 65 // bigint, large than int64
var b bigrat = 4/5r // bigrat
c := b - 1/3r + 3 * 1/2r // bigrat
println a, b, c
var x *big.Int = 1r << 65 // (1r << 65) is untyped bigint, and can be assigned to *big.Int
var y *big.Rat = 4/5r
println x, y
Why Go+
- All Go features will be supported (including partially support
cgo
). - Go+ provides simpler and more elegant grammar, which is closer to natural language than Go.
- Go+ is easy to learn. You don't have to deal with the complexity of engineering at the start.
- Go+ empowers every line of code. You can do more work with less code.
Go+ features
Rational number: bigint, bigrat, bigfloat
We introduce the rational number as native Go+ types. We use suffix r
to denote rational literals. For example, (1r << 200) means a big int whose value is equal to 2200. And 4/5r means the rational constant 4/5.
Map literal
x := {"Hello": 1, "xsw": 3.4} // map[string]float64 y := {"Hello": 1, "xsw": "Go+"} // map[string]interface{} z := {"Hello": 1, "xsw": 3} // map[string]int empty := {} // map[string]interface{}
Slice literal
x := [1, 3.4] // []float64 y := [1] // []int z := [1+2i, "xsw"] // []interface{} a := [1, 3.4, 3+4i] // []complex128 b := [5+6i] // []complex128 c := ["xsw", 3] // []interface{} empty := [] // []interface{}
Lambda expression
func plot(fn func(x float64) float64) { // ... } func plot2(fn func(x float64) (float64, float64)) { // ... } plot x => x * x // plot(func(x float64) float64 { return x * x }) plot2 x => (x * x, x + x) // plot2(func(x float64) (float64, float64) { return x * x, x + x })
Deduce struct type
type Config struct { Dir string Level int } func foo(conf *Config) { // ... } foo {Dir: "/foo/bar", Level: 1}
Here foo {Dir: "/foo/bar", Level: 1}
is equivalent to foo(&Config{Dir: "/foo/bar", Level: 1})
. However, you can't replace foo(&Config{"/foo/bar", 1})
with foo {"/foo/bar", 1}
, because it is confusing to consider {"/foo/bar", 1}
as a struct literal.
You also can omit struct types in a return statement. For example:
type Result struct { Text string } func foo() *Result { return {Text: "Hi, Go+"} // return &Result{Text: "Hi, Go+"} }
List comprehension
a := [x*x for x <- [1, 3, 5, 7, 11]] b := [x*x for x <- [1, 3, 5, 7, 11], x > 3] c := [i+v for i, v <- [1, 3, 5, 7, 11], i%2 == 1] d := [k+","+s for k, s <- {"Hello": "xsw", "Hi": "Go+"}] arr := [1, 2, 3, 4, 5, 6] e := [[a, b] for a <- arr, a < b for b <- arr, b > 2] x := {x: i for i, x <- [1, 3, 5, 7, 11]} y := {x: i for i, x <- [1, 3, 5, 7, 11], i%2 == 1} z := {v: k for k, v <- {1: "Hello", 3: "Hi", 5: "xsw", 7: "Go+"}, k > 3}
Select data from a collection
type student struct { name string score int } students := [student{"Ken", 90}, student{"Jason", 80}, student{"Lily", 85}] unknownScore, ok := {x.score for x <- students, x.name == "Unknown"} jasonScore := {x.score for x <- students, x.name == "Jason"} println unknownScore, ok // output: 0 false println jasonScore // output: 80
Check if data exists in a collection
type student struct { name string score int } students := [student{"Ken", 90}, student{"Jason", 80}, student{"Lily", 85}] hasJason := {for x <- students, x.name == "Jason"} // is any student named Jason? hasFailed := {for x <- students, x.score < 60} // is any student failed?
For loop
sum := 0 for x <- [1, 3, 5, 7, 11, 13, 17], x > 3 { sum += x }
Range expression (start:end:step
)
for i <- :10 { println i } for i := range :10:2 { println i } for i := range 1:10:3 { println i } for range :10 { println "Range expression" }
For range of UDT
type Foo struct { } // Gop_Enum(proc func(val ValType)) or: // Gop_Enum(proc func(key KeyType, val ValType)) func (p *Foo) Gop_Enum(proc func(key int, val string)) { // ... } foo := &Foo{} for k, v := range foo { println k, v } for k, v <- foo { println k, v } println {v: k for k, v <- foo}
Note: you can't use break/continue or return statements in for range of udt.Gop_Enum(callback).
For range of UDT2
type FooIter struct { } // (Iterator) Next() (val ValType, ok bool) or: // (Iterator) Next() (key KeyType, val ValType, ok bool) func (p *FooIter) Next() (key int, val string, ok bool) { // ... } type Foo struct { } // Gop_Enum() Iterator func (p *Foo) Gop_Enum() *FooIter { // ... } foo := &Foo{} for k, v := range foo { println k, v } for k, v <- foo { println k, v } println {v: k for k, v <- foo}
Overload operators
import "math/big" type MyBigInt struct { *big.Int } func Int(v *big.Int) MyBigInt { return MyBigInt{v} } func (a MyBigInt) + (b MyBigInt) MyBigInt { // binary operator return MyBigInt{new(big.Int).Add(a.Int, b.Int)} } func (a MyBigInt) += (b MyBigInt) { a.Int.Add(a.Int, b.Int) } func -(a MyBigInt) MyBigInt { // unary operator return MyBigInt{new(big.Int).Neg(a.Int)} } a := Int(1r) a += Int(2r) println a + Int(3r) println -a
Error handling
We reinvent the error handling specification in Go+. We call them ErrWrap expressions
:
expr! // panic if err expr? // return if err expr?:defval // use defval if err
How to use them? Here is an example:
import ( "strconv" ) func add(x, y string) (int, error) { return strconv.Atoi(x)? + strconv.Atoi(y)?, nil } func addSafe(x, y string) int { return strconv.Atoi(x)?:0 + strconv.Atoi(y)?:0 } println `add("100", "23"):`, add("100", "23")! sum, err := add("10", "abc") println `add("10", "abc"):`, sum, err println `addSafe("10", "abc"):`, addSafe("10", "abc")
The output of this example is:
add("100", "23"): 123 add("10", "abc"): 0 strconv.Atoi: parsing "abc": invalid syntax ===> errors stack: main.add("10", "abc") /Users/xsw/tutorial/15-ErrWrap/err_wrap.gop:6 strconv.Atoi(y)? addSafe("10", "abc"): 10
Compared to corresponding Go code, It is clear and more readable.
And the most interesting thing is, the return error contains the full error stack. When we got an error, it is very easy to position what the root cause is.
How these ErrWrap expressions
work? See Error Handling for more information.
Auto property
Let's see an example written in Go+:
import "gop/ast/goptest" doc := goptest.New(`... Go+ code ...`)! println doc.Any().FuncDecl().Name()
In many languages, there is a concept named property
who has get
and set
methods.
Suppose we have get property
, the above example will be:
import "gop/ast/goptest" doc := goptest.New(`... Go+ code ...`)! println doc.any.funcDecl.name
In Go+, we introduce a concept named auto property
. It is a get property
, but is implemented automatically. If we have a method named Bar()
, then we will have a get property
named bar
at the same time.
Unix shebang
You can use Go+ programs as shell scripts now. For example:
#!/usr/bin/env -S gop run println "Hello, Go+" println 1r << 129 println 1/3r + 2/7r*2 arr := [1, 3, 5, 7, 11, 13, 17, 19] println arr println [x*x for x <- arr, x > 3] m := {"Hi": 1, "Go+": 2} println m println {v: k for k, v <- m} println [k for k, _ <- m] println [v for v <- m]
Go 20-Unix-Shebang/shebang to get the source code.